Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.
نویسندگان
چکیده
The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development.
منابع مشابه
Neurodynamics, tonality, and the auditory brainstem response.
Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics gi...
متن کاملNeural Transformation of Dissonant Intervals in the Auditory Brainstem
ACOUSTIC PERIODICITY IS AN IMPORTANT FACTOR for discriminating consonant and dissonant intervals. While previous studies have found that the periodicity of musical intervals is temporally encoded by neural phase locking throughout the auditory system, how the nonlinearities of the auditory pathway influence the encoding of periodicity and how this effect is related to sensory consonance has bee...
متن کاملEffect of Infant Prematurity on Auditory Brainstem Response at Preschool Age
Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age. Materials and Methods: An auditory brainstem response (ABR) test was performed with low rates of stimuli in 60 ch...
متن کاملSelective subcortical enhancement of musical intervals in musicians.
By measuring the auditory brainstem response to two musical intervals, the major sixth (E3 and G2) and the minor seventh (E3 and F#2), we found that musicians have a more specialized sensory system for processing behaviorally relevant aspects of sound. Musicians had heightened responses to the harmonics of the upper tone (E), as well as certain combination tones (sum tones) generated by nonline...
متن کاملA Dynamical Systems Approach to Musical Tonality
Music is a form of communication that relies on highly structured temporal sequences comparable in complexity to language. Music is found among all human cultures, and musical languages vary across cultures with learning. Tonality – a set of stability and attraction relationships perceived among musical frequencies – is a universal feature of music, found in virtually every musical culture. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hearing research
دوره 308 شماره
صفحات -
تاریخ انتشار 2014